Abstract

In a molecular crowding environment, different thermodynamics is often observed in a dilute solution. One such example is the promotion of the formation of amyloids, which are causal agents of Alzheimer's disease. Although a considerable number of molecular crowding studies have been reported, its effect remains unclear. In this study, we investigated a J-aggregation of a porphyrin derivative, 5, 10, 15, 20-tetraphenyl-21H,23H-porphinetetrasulfonic acid (TPPS), in a molecular crowding environment simulated by dextran (Dex) in HClO4, HCl, and NaCl solutions. The changes in the number of monomers in the J-aggregate (n) with the concentration of Dex (CDex) depended on the type of solution. No change in n was observed in the NaCl solution, which indicated that the Dex solution did not affect the J-aggregation because of the ionic strength effect. In the HCl solution, the aggregation behavior changed with the pH. Further, at a low pH, the electrostatic interactions promoted J-aggregation by the volume exclusion of Dex, while the aggregation was suppressed at a high pH owing to steric hindrance. A different aggregation mechanism, involving the hydrogen bonding between NH in the center of the TPPS macrocyclic frame and the SO3H and ClO4- functional groups, was responsible for the J-aggregation in the HClO4 solution. Moreover, the n value increased owing to the volume exclusion effect. We expect that this study will be useful for further elucidation of the molecular crowding effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.