Abstract
The second near-infrared IIa window (NIR-IIa, 1300nm∼1400nm) enables high-resolution imaging and deep-tissue tumor treatment due to its unique low tissue scattering and autofluorescence, high temporal-spatial resolution, and deep tissue penetration. Therefore, NIR-IIa fluorescence imaging-guided phototherapy is of specific interest. However, organic dyes and their nanoparticles for NIR-IIa phototheranostics are still scarce. Here, we have synthesized a Br- and piperazine-modified cyanine dye (FN) and its nanomicelles encapsulated by an amphiphilic polypeptide with sidechains of tertiary amine (PEA). The J-aggregates of P@FN9 with 1116 nm absorption and efficient NIR-IIa fluorescence emission were formed by the self-assembly of FN and PEA. P@FN9 nanoparticles (NPs) showed good stability and high photothermal conversion efficiency (55.4%). In addition, the high spatial resolution and signal-to-background ratio (SBR) of P@FN9 were demonstrated by NIR-IIa fluorescence imaging of mouse vasculature. The P@FN9 NPs successfully performed the NIR-IIa fluorescence imaging-guided photothermal therapy, and both in vitro and in vivo experiments indicated that the P@FN9 NPs exhibited effective antitumor effects under the NIR-II (1064 nm) laser irradiation. Statement of significance•Br- and piperazine-modified cyanine dye, that showed NIT-II fluorescence, has been synthesized.•After the dye was encapsulated by an amphiphilic polypeptide with sidechains of tertiary amine, J-aggregates were formed.•The J-aggregates showed efficient fluorescence in the NIR-IIa region with high photothermal conversion efficiency.•Under NIR-II 1064 light irradiation, the aggregates showed efficient NIR-IIa phototheranostics for tumors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.