Abstract

Silicate inclusions from two IIE iron meteorites were dated by the I-Xe and 40Ar- 39Ar techniques. Weekeroo Station, a ‘normal’ IIE iron, shows no loss of radiogenic 40Ar at low temperature, and the well-defined 40Ar- 39Ar plateau yields an age of 4.54 ± 0.03 Byr. The xenon data define a good I-Xe correlation with an age of +10.9 ± 0.5 Myr relative to Bjurböle [the monitor error (±2.5 Myr) is not included].^Despite its relatively young age, Weekeroo Station's ( 129Xe 132Xe) trappad ratio (= 0.84 ± 0.05) lies significantly below the solar value. Netschaëvo silicate has a chondritic composition, unlike ‘normal’ IIE silicate which is more differentiated. Nevertheless Netschaëvo gives a 40Ar- 39Ar plateau-age of only 3.79 ± 0.03 Byr, with the xenon data failing to define an I-Xe isochron. Only irons from the IAB and IIE groups contain silicate inclusions, but these two groups differ in many other respects, mostly suggesting that IAB meteorites are more primitive. The I-Xe chronology supports this suggestion inasmuch as Weekeroo Station formed well after (8–15 Myr) IAB silicates. In terms of Scott and Wasson's (1976) model, ages for Weekeroo Station date the shock event which formed ‘normal’ IIE irons by mixing the low-melting fraction of the parent silicate with shock-liquefied metal. Scott and Wasson's suggestion that Netschaëvo represents IIE parent material, however, is contradicted by Netschaëvo's 3.8 Byr age. The four silicate-bearing IIE irons which have now been dated can be subdivided into distinct pairs: Weekeroo Station and Colomera formed near the beginning of the solar system, while Netschaëvo and Kodaikanal both formed only 3.8 Byr ago. A review of other properties of these meteorites generally support this subdivision. This work underscores the complexity of the history of IIE meteorites; in particular, an adequate model must account for the formation of two IIE irons at 3.8 Byr without disturbing rare gases in Weekeroo Station. All formation models are quite speculative, but the one which seems best to fit the available evidence postulates two parent bodies: the 3.8 Byr old silicate formed on one parent body, all other IIE material resided in a separate body, and subsequent collision(s) mixed the young silicate with IIE metal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call