Abstract

PurposeWhen establishing IVIVC, a special problem arises by interpretation of averaged in vivo profiles insight of considerable individual variations in term of time and number of mechanical stress events in GI-tract. The objective of the study was to investigate and forecast the effect of mechanical stress on in vivo behavior in human of hydrophilic matrix tablets.MethodsDissolution profiles for the marketed products were obtained at different conditions (stirring speed, single- or repeatable mechanical stress applied) and convoluted into C-t profiles. Vice versa, published in vivo C-t profiles of the products were deconvoluted into absorption profiles and compared with dissolution profiles by similarity factor.ResultsInvestigated hydrophilic matrix tablets varied in term of their resistance against hydrodynamic stress or single stress during the dissolution. Different scenarios, including repeatable mechanical stress, were investigated on mostly prone Seroquel® XR 50 mg. None of the particular scenarios fits to the published in vivo C-t profile of Seroquel® XR 50 mg representing, however, the average of individual profiles related to scenarios differing by number, frequency and time of contraction stress. When different scenarios were combined in different proportions, the profiles became closer to the original in vivo profile including a burst between 4 and 5 h, probably, due to stress-events in GI-tract.ConclusionFor establishing IVIVC of oral dosage forms susceptible mechanical stress, a comparison of the deconvoluted individual in vivo profiles with in vitro profiles of different dissolution scenarios can be recommended.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.