Abstract

BackgroundDual-person inspection in IVF laboratories cannot fully avoid mix-ups or embryo transfer errors, and data transcription or entry is time-consuming and redundant, often leading to delays in completing medical records.MethodsThis study introduced a workflow-based RFID tag witnessing and real-time information entry platform for addressing these challenges. To assess its potential in reducing mix-ups, we conducted a simulation experiment in semen preparation to analyze its error correction rate. Additionally, we evaluated its impact on work efficiency, specifically in operation and data entry. Furthermore, we compared the cycle costs between paper labels and RFID tags. Finally, we retrospectively analyzed clinical outcomes of 20,424 oocyte retrieval cycles and 15,785 frozen embryo transfer cycles, which were divided into paper label and RFID tag groups.ResultsThe study revealed that comparing to paper labels, RFID tag witnessing corrected 100% of tag errors, didn’t affect gamete/embryo operations, and notably shorten the time of entering data, but the cycle cost of RFID tags was significantly higher. However, no significant differences were observed in fertilization, embryo quality, blastocyst rates, clinical pregnancy, and live birth rates between two groups.ConclusionsRFID tag witnessing doesn’t negatively impact gamete/embryo operation, embryo quality and pregnancy outcomes, but it potentially reduces the risk of mix-ups or errors. Despite highly increased cost, integrating RFID tag witnessing with real-time information entry can remarkably decrease the data entry time, substantially improving the work efficiency. This workflow-based management platform also enhances operational safety, ensures medical informational integrity, and boosts embryologist’s confidence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.