Abstract
Abstract The classification, modeling, and quantification of human errors in routine chemical analysis are described. Classifications include commission errors (mistakes and violations) and omission errors (lapses and slips) in different scenarios at different steps of the chemical analysis. A Swiss cheese model is used to characterize error interaction with a laboratory quality system. The quantification of human errors in chemical analysis, based on expert judgments, i.e. on the expert(s) knowledge and experience, is applied. A Monte Carlo simulation of the expert judgments was used to determine the distributions of the error quantification scores (scores of likelihood and severity, and scores of effectiveness of a laboratory quality system against the errors). Residual risk of human error after the error reduction by the laboratory quality system and consequences of this risk for quality and measurement uncertainty of chemical analytical results are discussed. Examples are provided using expert judgments on human errors in pH measurement of groundwater, multi-residue analysis of pesticides in fruits and vegetables, and elemental analysis of geological samples by inductively coupled plasma mass spectrometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.