Abstract
Mobile edge computing is an emerging technology to offer resource-intensive yet delay-sensitive applications from the edge of mobile networks, where a major challenge is to allocate limited edge resources to competing demands. While prior works often make a simplifying assumption that resources assigned to different users are non-sharable, this assumption does not hold for storage resources, where users interested in services (e.g., data analytics) based on the same set of data/code can share storage resource. Meanwhile, serving each user request also consumes non-sharable resources (e.g., CPU cycles, bandwidth). We study the optimal provisioning of edge services with non-trivial demands of both sharable (storage) and non-sharable (communication, computation) resources via joint service placement and request scheduling. In the homogeneous case, we show that while the problem is polynomial-time solvable without storage constraints, it is NP-hard even if each edge cloud has unlimited communication or computation resources. We further show that the hardness is caused by the service placement subproblem, while the request scheduling subproblem is polynomial-time solvable via maximum-flow algorithms. In the general case, both subproblems are NP-hard. We develop a constant-factor approximation algorithm for the homogeneous case and efficient heuristics for the general case. Our trace-driven simulations show that the proposed algorithms, especially the approximation algorithm, can achieve near-optimal performance, serving 2–3 times more requests than a baseline solution that optimizes service placement and request scheduling separately.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.