Abstract

To better describe the shape of the constantly deforming Earth’s surface, the ITRF2020 is provided as an augmented terrestrial reference frame that precisely models nonlinear station motions for both seasonal (annual and semi-annual) signals present in the station position time series and Post-Seismic Deformation (PSD) for sites impacted by major earthquakes. Reprocessed solutions in the form of station position time series and Earth Orientation Parameters using the full observation history provided by the four space geodetic techniques (DORIS, GNSS, SLR and VLBI) were used as input data, spanning 28, 27, 38 and 41 years of observations, respectively. The ITRF2020 long-term origin follows linearly with time the Earth’s Center of Mass (CM) as sensed by SLR, based on observations collected over the time span 1993.0–2021.0. We evaluate the accuracy of the ITRF2020 long-term origin position and time evolution by comparison to previous solutions, namely ITRF2014, ITRF2008 and ITRF2005, to be at the level of or better than 5 mm and 0.5 mm/yr, respectively. The ITRF2020 long-term scale is defined by a rigorous weighted average of selected VLBI sessions up to 2013.75 and SLR weekly solutions covering the 1997.75–2021.0 time span. For the first time of the ITRF history, the scale agreement between SLR and VLBI long-term solutions is at the level of 0.15 ppb (1 mm at the equator) at epoch 2015.0, with no drift. To accommodate most of ITRF2020 users, the seasonal station coordinate variations are provided in the CM as well as in the Center of Figure frames, together with a seasonal geocenter motion model. While the PSD parametric models were determined by fitting GNSS data only, they also fit the station position time series of the three other techniques that are colocated with GNSS, demonstrating their high performance in describing site post-seismic trajectories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call