Abstract

Drought stress, especially during the seedling stage, seriously limits the growth of maize and reduces production in the northeast of China. To investigate the molecular mechanisms of drought response in maize seedlings, proteome changes were analyzed. Using an isotopic tagging relative quantitation (iTRAQ) based method, a total of 207 differentially accumulated protein species (DAPS) were identified under drought stress in maize seedlings. The DAPS were classified into ten essential groups and analyzed thoroughly, which involved in signaling, osmotic regulation, protein synthesis and turnover, reactive oxygen species (ROS) scavenging, membrane trafficking, transcription related, cell structure and cell cycle, fatty acid metabolism, carbohydrate and energy metabolism, as well as photosynthesis and photorespiration. The enhancements of ROS scavenging, osmotic regulation, protein turnover, membrane trafficking, and photosynthesis may play important roles in improving drought tolerance of maize seedlings. Besides, the inhibitions of some protein synthesis and slowdown of cell division could reduce the growth rate and avoid excessive water loss, which is possible to be the main reasons for enhancing drought avoidance of maize seedlings. The incongruence between protein and transcript levels was expectedly observed in the process of confirming iTRAQ data by quantitative real-time polymerase chain reaction (qRT-PCR) analysis, which further indicated that the multiplex post-transcriptional regulation and post-translational modification occurred in drought-stressed maize seedlings. Finally, a hypothetical strategy was proposed that maize seedlings coped with drought stress by improving drought tolerance (via. promoting osmotic adjustment and antioxidant capacity) and enhancing drought avoidance (via. reducing water loss). Our study provides valuable insight to mechanisms underlying drought response in maize seedlings.

Highlights

  • Drought is a major environmental factor affecting crop production

  • The activities of peroxidase (POD), superoxide dismutase (SOD), and glutathione S-transferase (GST) were induced significantly increasing after 5-day water withholding treatment (Figure 1). These results indicated that reactive oxygen species (ROS) scavenging system had been activated to maintain ROS homeostasis

  • Subsequent results showed that the abundance of POD (C4J6E4, A5H453, B4FN24, B4FLE3), SOD (P23346), and GST (B6SMJ6, A0A1D6PD99, A0A1D6JYM2, Q9FQA3, A0A1D6LSN2, A0A1D6L6U6) all significantly increased under the drought treatment, indicating that the accumulation of POD, SOD, and GST may be a major reason for the enhancement of ROS scavenging

Read more

Summary

Introduction

Drought is a major environmental factor affecting crop production. The frequency of drought has increased significantly. Maize (Zea mays L.), as an important crop, is often affected by drought or moisture deficit. Drought has seriously threatened maize production worldwide, especially under rain-fed conditions [1]. In China, more than 70% of maize growing areas are threatened by drought stress [2]. In the northeast of China, drought mostly occurs in spring and affects maize seedling growth and yield potential [3]. Investigating the mechanism of drought response at maize seedling stage is very helpful to breed drought-tolerant maize varieties

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.