Abstract
Abscisic acid (ABA), as a sesquiterpenoid hormone, could regulate lots of physiological processes, especially secondary metabolism in plants. Nevertheless, its mechanism of action, from the perspective of protein expression, remains largely unknown. In the study, isobaric tags for relative and absolute quantitation (iTRAQ) was employed to investigate ABA treatment-induced proteomic changes related to secondary metabolism in soybean sprouts. Among the 3033 proteins identified, compared with the control, ABA treatment up- and down-regulated 350 proteins. These proteins were involved in GABA biosynthesis, such as glutamate synthase, glutamate decarboxylase (GAD), methionine synthetase, 5-methyltetrahydropteroyltriglutamate–homocysteine methyltransferase 1, aminoaldehyde dehydrogenase (AMADH) and inositol phosphate metabolism pathways, including phosphoinositide phospholipase C (PI-PLC), purple acid phosphatase (PAP) and inositol polyphosphate 5-phosphatase. In addition, flavonoid biosynthetic proteins, such as cinnamate 4-hydroxylase, chalcone isomerase, chalcone synthase, isoflavone synthase and isoflavone reductase, were also modulated in response to ABA treatment. What's more, ABA treatment regulated proteins involved in ABA signal transduction, such as SNF1-related protein kinase (SnRK), protein phosphatase 2C (PP2C), guanine nucleotide-binding protein and calreticulin-3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.