Abstract

BackgroundVibrio parahaemolyticus is a common pathogen infecting humans and marine animals; this pathogen has become a major concern of marine food products and trade. In this study, V. parahaemolyticus isolated from sewage was exposed to different culture conditions and analyzed by isobaric tag for relative and absolute quantitation (iTRAQ) based reversed-phase liquid chromatography-tandem mass spectrometry (LC-MS/MS) technique. Our goal is to gain further insights into the proteomics of V. parahaemolyticus, particularly differentially expressed proteins closely correlated with growth conditions and pathogenicity associated proteins.ResultsIn this study, a total of 2,717 proteins including numerous membrane proteins were significantly identified, and 616 proteins displayed significant differential expression under different conditions. Of them, 12 proteins mainly participating in metabolism showed the most elastic expression differentiation between different culture conditions. Some membrane proteins such as type I secretion outer membrane protein, TolC, lipoprotein, efflux system proteins iron-regulated protein A and putaive Fe-regulated protein B, ferric siderophore receptor homolog and several V. parahaemolyticus virulence-associated proteins were differentially regulated under different conditions. Some differentially regulated proteins were analyzed and confirmed at gene expression level by quantitative real time polymerase chain reaction (qRT-PCR).ConclusionsProteomics analysis results revealed the characteristics of V. parahaemolyticus proteome expression, provided some promising biomarkers related with growth conditions, the results likely advance insights into the mechanism involved in the response of V. parahaemolyticus to different conditions. Some virulence-associated proteins were discovered to be differentially expressed under different conditions.Electronic supplementary materialThe online version of this article (doi:10.1186/s12953-015-0075-4) contains supplementary material, which is available to authorized users.

Highlights

  • Vibrio parahaemolyticus is a common opportunistic pathogen infecting humans and marine animals; this pathogen causes food-borne gastroenteritis, occasional wound infection, and sepsis in immune-compromised patients, as well as great losses in crustacean and fish aquaculture

  • Based on gene ontology (GO) classification, their molecular functions were mainly displayed in catalytic activity with approximately 44 % of all molecular functions, binding function takes up

  • The detailed information of the proteins was listed in Additional files 2, 3 and 4. These results further indicated that the detected V. parahaemolyticus required different factors to transport various ions, nutrients, and other metabolites across the outer membranes under different growth conditions; V. parahaemolyticus required specific signal pathways that respond to various environmental stimuli

Read more

Summary

Introduction

Vibrio parahaemolyticus is a common opportunistic pathogen infecting humans and marine animals; this pathogen causes food-borne gastroenteritis, occasional wound infection, and sepsis in immune-compromised patients, as well as great losses in crustacean and fish aquaculture. V. parahaemolyticus has been considered as a significant public health concern and sanitary risk in the production and trade of seafood worldwide because this species is abundant in marine products [1]. We isolated V. parahaemolyticus strains multiple times in sewage and adjacent seawaters of Dalian, China, in different seasons. Vibrio parahaemolyticus is a common pathogen infecting humans and marine animals; this pathogen has become a major concern of marine food products and trade. V. parahaemolyticus isolated from sewage was exposed to different culture conditions and analyzed by isobaric tag for relative and absolute quantitation (iTRAQ) based reversed-phase liquid chromatography-tandem mass spectrometry (LC-MS/MS) technique. Our goal is to gain further insights into the proteomics of V. parahaemolyticus, differentially expressed proteins closely correlated with growth conditions and pathogenicity associated proteins

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call