Abstract

Treatment of schistosomiasis is heavily reliant on the single antischistosomal drug praziquantel (PZQ). The use of synergistic drug-drug interactions is one possible solution, which could be used to mitigate PZQ's poor and variable bioavailability. Itraconazole (ITZ), a triazole antifungal agent, is a potent CYP3A inhibitor that can cause significant drug-drug interactions when used with CYP3A substrates. This study investigates the effect of ITZ as adjuvant therapy with PZQ on worm load, egg deposition and maturation, and the consequent histopathology and biochemical abnormalities in the liver during the immature and mature stages of Schistosoma mansoni (S. mansoni) infection. S. mansoni-infected mice were divided into five groups of eight−ten mice each: (I) infected untreated, (II) infected and treated with PZQ 3 weeks PI, (III) infected and treated with both ITZ and PZQ 3 weeks PI, (IV) infected and treated with PZQ 7 weeks PI, and (V) infected and treated with both ITZ and PZQ 7 weeks PI. All mice were killed by rapid decapitation 9 weeks PI. Data revealed that ITZ in combination with PZQ at both immature and mature stages improved the parasitological criteria of cure, and greatly reduced inflammation, granuloma and fibrotic tissue formation, and apoptosis versus PZQ alone. Furthermore, it showed the greatest impact on improving liver injury and oxidative stress markers. Notably, the effect was considerably stronger at the mature stage of S. mansoni infection. These findings support the notion that ITZ increased PZQ's antischistosomal activity by inhibiting CYP450 expression, potentially reducing PZQ metabolism and increasing systemic exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call