Abstract

In this study, ITO nanoparticles (ITO-NPs) were reused from ITO target scraps to synthesize low cost ITO-NPs and to apply to make sputtering target for transparent conductive electrodes (TCEs). By controlling heat-treatment temperature as 980 °C, we achieved reused ITO-NPs having Brunauer, Emmett and Teller specific surface area (BET SSA) and average particle size 8.05 m2/g and 103.8 nm, respectively. The BET SSA decreases along with increasing heat-treatment temperature. The ITO-NPs were grown as round mound shape, and highly crystallized to (222) preferred orientations. Also, applying the reused ITO-NPs, we achieved an ITO target of which density was 99.6%. Using the ITO target, we achieved high quality TCE layer of which sheet resistance and optical transmittance at 550 nm were 29.5 Ω/sq. and 82.3%. Thus, it was confirmed that the reused ITO-NPs was feasible to sputtering target for TCEs layer.

Highlights

  • In recent, interests on fourth generation industrial revolution have been arisen, and it is strongly related to artificial intelligence (AI), internet of thing (IoT), advanced reality (AR), and virtual reality (VR), etc

  • The BET specific surface area (SSA) decreased along with increasing heat-treatment temperature. Their average particle size was calculated from the BET SSA as follows; D = 6/ρ · d where D, ρ and d are particle size, SSA and density, respectively

  • We suggest that it is attributed to amorphous structured transparent conductive electrodes (TCEs) layer just after deposition without heat-treatment

Read more

Summary

Introduction

Interests on fourth generation industrial revolution have been arisen, and it is strongly related to artificial intelligence (AI), internet of thing (IoT), advanced reality (AR), and virtual reality (VR), etc. It is heavily dictated by customer demand, and the customers intensively demand smaller and lighter electronics devices with high cost-effectiveness [1]. One of factors determining the cost of the devices is transparent conductive electrodes (TCEs), and indium tin oxide (ITO) is mainly used as the TCEs. ITO is consistent of tin (Sn) doped indium oxide (­In2O3). The In is an important material for the ITO owing to its unique characteristics, high optical transparency and electrical conductivity.

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.