Abstract

We investigate the influence of itinerant carriers on the dynamics and fluctuation of local moments in Fe-based superconductors, via linear spin-wave analysis of a spin-fermion model containing both itinerant and local degrees of freedom. Surprisingly, against the common lore, instead of enhancing the (π,0) order, itinerant carriers with well-nested Fermi surfaces are found to induce a significant amount of spatial and temporal quantum fluctuation that leads to the observed small ordered moment. Interestingly, the underlying mechanism is shown to be an intrapocket nesting-associated long-range coupling rather than the previously believed ferromagnetic double-exchange effect. This challenges the validity of ferromagnetically compensated first-neighbor coupling reported from short-range fitting to the experimental dispersion, which turns out to result instead from the ferro-orbital order that is also found instrumental in stabilizing the magnetic order.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call