Abstract

Converging evidence from neural, perceptual and simulated data suggests that discrete attractor states form within neural circuits through learning and development. External stimuli may bias neural activity to one attractor state or cause activity to transition between several discrete states. Evidence for such transitions, whose timing can vary across trials, is best accrued through analyses that avoid any trial-averaging of data. One such method, hidden Markov modeling, has been effective in this context, revealing state transitions in many neural circuits during many tasks. Concurrently, modeling efforts have revealed computational benefits of stimulus processing via transitions between attractor states. This review describes the current state of the field, with comments on how its perceived limitations have been addressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.