Abstract

BackgroundHypoxia-inducible factors (HIFs) are well-established mediators of tumor growth, the epithelial to mesenchymal transition (EMT) and metastasis. In several types of solid tumors, including breast cancers, the HIFs play a critical role in maintaining cancer stem cell (CSC) activity. Thus, we hypothesized that HIFs may also regulate transcription of markers of breast CSC activity. One approach to enrich for breast cells with stem-like phenotypes is FACS sorting, in which sub-populations of live cells are gated based on the expression of cell surface antigens, including various integrin subunits. Integrin alpha 6 (ITGA6; CD49f) is routinely used in combination with other integrin subunits to enrich for breast stem cells by FACS. Integrins not only mediate interactions with the extracellular matrix (ECM), but also drive intracellular signaling events that communicate from the tumor microenvironment to inside of the tumor cell to alter phenotypes including migration and invasion.MethodsWe used two models of metastatic breast cancer (MBC), polyoma middle T (MMTV-PyMT) and MDA-MB-231 cells, to compare the expression of ITGA6 in wild type and knockout (KO) or knockdown cells. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays verified that ITGA6 is a direct HIF transcriptional target. We also used FACS sorting to enrich for CD49f + cells to compare tumorsphere formation, tumor initiating cell activity, invasion and HIF activity relative to CD49fneg or low cells. Knockdown of ITGA6 significantly reduced invasion, whereas re-expression of ITGA6 in the context of HIF knockdown partially rescued invasion. A search of public databases also revealed that ITGA6 expression is an independent prognostic factor of survival in breast cancer patients.ResultsWe report that ITGA6 is a HIF-dependent target gene and that high ITGA6 expression enhances invasion and tumor-initiating cell activities in models of MBC. Moreover, cells that express high levels of ITGA6 are enriched for HIF-1α expression and the expression of HIF-dependent target genes.ConclusionsOur data suggest that HIF-dependent regulation of ITGA6 is one mechanism by which sorting for CD49f + cells enhances CSC and metastatic phenotypes in breast cancers. Our results are particularly relevant to basal-like breast cancers which express higher levels of the HIFα subunits, core HIF-dependent target genes and ITGA6 relative to other molecular subtypes.Electronic supplementary materialThe online version of this article (doi:10.1186/s12943-016-0510-x) contains supplementary material, which is available to authorized users.

Highlights

  • Hypoxia-inducible factors (HIFs) are well-established mediators of tumor growth, the epithelial to mesenchymal transition (EMT) and metastasis

  • Deletion of HIF reduces Integrin alpha 6 (ITGA6) expression in polyoma virus middle T transgenic mouse model (PyMT) tumor cells Itga6 mRNA levels were compared in HIF-1 wild type (WT) and knockout (KO) PyMT tumor cells cultured at normoxia or hypoxia by quantitative real-time PCR

  • These results are consistent with our previous observations that PyMT tumor cells express detectable levels of HIF-1α protein at normoxia, maximal levels of HIF-1α protein accumulate at 6 h of hypoxia (0.5 % O2) [3]

Read more

Summary

Introduction

Hypoxia-inducible factors (HIFs) are well-established mediators of tumor growth, the epithelial to mesenchymal transition (EMT) and metastasis. In several types of solid tumors, including breast cancers, the HIFs play a critical role in maintaining cancer stem cell (CSC) activity. The rate of rapidly dividing cancer cells in solid tumors quickly surpasses the rate at which new functional blood vessels are formed. In these nutrient- and oxygendepleted areas, a hypoxic transcriptional response is orchestrated by the Hypoxia-Inducible Factor transcription factors (HIFs), which mediate transcription of multiple genes necessary to adapt to an adverse tumor microenvironment [1]. HIF1 regulates breast tumor growth and metastasis in part by modulating pathways that promote cancer stem cell (CSC)-like activities

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call