Abstract

AbstractThe memory requirements of best-first graph search algorithms such as A* often prevent them from solving large problems. The best-known approach for coping with this issue is iterative deepening, which performs a series of bounded depth-first searches. Unfortunately, iterative deepening only performs well when successive cost bounds visit a geometrically increasing number of nodes. While it happens to work acceptably for the classic sliding tile puzzle, IDA* fails for many other domains. In this paper, we present an algorithm that adaptively chooses appropriate cost bounds on-line during search. During each iteration, it learns a model of the search tree that helps it to predict the bound to use next. Our search tree model has three main benefits over previous approaches: 1) it will work in domains with real-valued heuristic estimates, 2) it can be trained on-line, and 3) it is able to make predictions with only a small number of training examples. We demonstrate the power of our improved model by using it to control an iterative-deepening A* search on-line. While our technique has more overhead than previous methods for controlling iterative-deepening A*, it can give more robust performance by using its experience to accurately double the amount of search effort between iterations.KeywordsParent NodeDistance EstimateEstimation FactorNode TypeIncremental ModelThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call