Abstract

Abstract Metal additive manufacturing (AM) has recently attracted attention due to its potential for batch/mass production of metal parts. This process, however, currently suffers from problems including low productivity, inconsistency in the properties of the printed parts, and defects such as lack of fusion and keyholing. Finite element (FE) modeling cannot accurately model the metal AM process and has a high computational cost. Empirical models based on experiments are time-consuming and expensive. This paper enhances a previously developed framework that takes advantages of both empirical and FE models. The validity and accuracy of the metamodel developed in the earlier framework depend on the initial assumption of parameter uncertainties. This causes a problem when the assumed uncertainties are far from the actual values. The proposed framework introduces an iterative calibration process to overcome this limitation. After comparing several calibration metrics, the second-order statistical moment-based metric (SMM) was chosen as the calibration metric in the improved framework. The framework is then applied to a four-variable porosity modeling problem. The obtained model is more accurate than using other approaches with only ten available experimental data points for calibration and validation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.