Abstract

Abstract The assessment of subtle morphological changes in noisy signals is a common challenge in the field of biomedical signal processing. Concerning the electrocardiogram (ECG), it may yield novel risk factors for cardiac mortality. Here, we describe an iterative two-dimensional signal warping algorithm (i2DSW), which morphological analyses even in case of noise ratios. i2DSW adapts a generalized iterative template adaptation process that yields a more flexible template and allows for better fitting of subtle variations of signal shapes. Moreover, the template segmentation is not dependent on signal morphology. We test its performance, by measuring beat-to-beat repolarization variability in simulated and clinical ECG. Simulation studies show higher robustness of i2DSW in presence of typical ECG artefacts compared to previously proposed methods including the existing two-dimensional warping technique (26% improvement). Comparison of short-term ECG recorded in normal subjects versus patients with myocardial infarction (MI) confirmed increased repolarization variability in MI patients ( p

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.