Abstract

In this paper, we propose a fully automatic image segmentation and matting approach with RGB-Depth (RGB-D) data based on iterative transductive learning. The algorithm consists of two key elements: robust hard segmentation for trimap generation, and iterative transductive learning based image matting. The hard segmentation step is formulated as a Maximum A Posterior (MAP) estimation problem, where we iteratively perform depth refinement and bi-layer classification to achieve optimal results. For image matting, we propose a transductive learning algorithm that iteratively adjusts the weights between the objective function and the constraints, overcoming common issues such as over-smoothness in existing methods. In addition, we present a new way to form the Laplacian matrix in transductive learning by ranking similarities of neighboring pixels, which is essential to efficient and accurate matting. Extensive experimental results are reported to demonstrate the state-of-the-art performance of our method both subjectively and quantitatively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.