Abstract
The precise reconstruction of accelerated magnetic resonance imaging (MRI) brings about notable advantages, such as enhanced diagnostic precision and decreased examination costs. In contrast, traditional cardiac MRI necessitates repetitive acquisitions across multiple heartbeats, resulting in prolonged acquisition times. Significant strides have been made in accelerating MRI through deep learning-based reconstruction methods. However, these existing methods encounter certain limitations: (1) The intricate nature of heart reconstruction involving multiple complex time-series data poses a challenge in exploring nonlinear dependencies between temporal contexts. (2) Existing research often overlooks weight sharing in iterative frameworks, impeding the effective capturing of non-local information and, consequently, limiting improvements in model performance. In order to improve cardiac MRI reconstruction, we propose a novel temporal-spatial transformer with a strategy in this study. Based on the multi-level encoder and decoder transformer architecture, we conduct multi-level spatiotemporal information feature aggregation over several adjacent views, that create nonlinear dependencies among features and efficiently learn important information among adjacent cardiac temporal frames. Additionally, in order to improve contextual awareness between neighboring views, we add cross-view attention for temporal information fusion. Furthermore, we introduce an iterative strategy for training weights during the reconstruction process, which improves feature fusion in critical locations and reduces the number of computations required to calculate global feature dependencies. Extensive experiments have demonstrated the substantial superiority of this procedure over the most advanced techniques, suggesting that it has broad potential for clinical use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Multimedia Computing, Communications, and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.