Abstract

Fractional abundances predicted for a given pixel using spectral mixture analysis (SMA) are most accurate when only the endmembers that comprise it are used, with larger errors occurring if inappropriate endmembers are included in the unmixing process. This paper presents an iterative implementation of SMA (ISMA) to determine optimal per-pixel endmember sets from the image endmember set using two steps: 1) an iterative unconstrained unmixing, which removes one endmember per iteration based on minimum abundance and 2) analysis of the root-mean-square error as a function of iteration to locate the critical iteration defining the optimal endmember set. The ISMA was tested using simulated data at various signal-to-noise ratios (SNRs), and the results were compared with those of published unmixing methods. The ISMA method correctly selected the optimal endmember set 96% of the time for SNR of 100 : 1. As a result, per-pixel errors in fractional abundances were lower than for unmixing each pixel using the full endmember set. ISMA was also applied to Airborne Visible/Infrared Imaging Spectrometer hyperspectral data of Cuprite, NV. Results show that the ISMA is effective in obtaining abundance fractions that are physically realistic (sum close to one and nonnegative) and is more effective at selecting endmembers that occur within a pixel as opposed to those that are simply used to improve the goodness of fit of the model but not part of the mixture

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.