Abstract

BackgroundAlthough supervoxel segmentation methods have been employed for brain Magnetic Resonance Image (MRI) processing and analysis, due to the specific features of the brain, including complex-shaped internal structures and partial volume effect, their performance remains unsatisfactory. New methodsTo address these issues, this paper presents a novel iterative spatial fuzzy clustering (ISFC) algorithm to generate 3D supervoxels for brain MRI volume based on prior knowledge. This work makes use of the common topology among the human brains to obtain a set of seed templates from a population-based brain template MRI image. After selecting the number of supervoxels, the corresponding seed template is projected onto the considered individual brain for generating reliable seeds. Then, to deal with the influence of partial volume effect, an efficient iterative spatial fuzzy clustering algorithm is proposed to allocate voxels to the seeds and to generate the supervoxels for the overall brain MRI volume. ResultsThe performance of the proposed algorithm is evaluated on two widely used public brain MRI datasets and compared with three other up-to-date methods. ConclusionsThe proposed algorithm can be utilized for several brain MRI processing and analysis, including tissue segmentation, tumor detection and segmentation, functional parcellation and registration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.