Abstract

In this paper, by extending the well-known Jacobi and Gauss–Seidel iterations for Ax = b , we study iterative solutions of matrix equations AXB = F and generalized Sylvester matrix equations AXB + CXD = F (including the Sylvester equation AX + XB = F as a special case), and present a gradient based and a least-squares based iterative algorithms for the solution. It is proved that the iterative solution always converges to the exact solution for any initial values. The basic idea is to regard the unknown matrix X to be solved as the parameters of a system to be identified, and to obtain the iterative solutions by applying the hierarchical identification principle. Finally, we test the algorithms and show their effectiveness using a numerical example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.