Abstract

The correct formulation of numerical models for free-surface hydrodynamics often requires the solution of special linear systems whose coefficient matrix is a piecewise constant function of the solution itself. In so doing one may prevent the development of unrealistic negative water depths. The resulting piecewise linear systems are equivalent to particular linear complementarity problems whose solutions could be obtained by using, for example, interior point methods. These methods may have a favorable convergence property, but they are purely iterative and convergence to the exact solution is proven only in the limit of an infinite number of iterations. In the present paper a simple Newton-type procedure for certain piecewise linear systems is derived and discussed. This procedure is shown to have a finite termination property, i.e., it converges to the exact solution in a finite number of steps, and, actually, it converges very quickly, as confirmed by a few numerical tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.