Abstract
In this paper, we present an iterative scheme integrating simulation with an optimization model, for solving complex problems, viz., job shop scheduling. The classical job shop scheduling problem which is NP-Hard, has often been modelled as Mixed-Integer Programming (MIP) model and solved using exact algorithms (for example, branch-and-bound and branch-and-cut) or using meta-heuristics (for example, Genetic Algorithm, Particle Swarm Optimization and Simulated Annealing). In the proposed Iterative Simulation-Optimization (ISO) approach, we use a modified formulation of the scheduling problem where the operational aspects of the job shop are captured only in the simulation model. Two new decision variables, controller delays and queue priorities are used to introduce feedback constraints, that help exchange information between the two models. The proposed method is tested using benchmark instances from the OR library. The results indicate that the method gives near optimal schedules in a reasonable computational time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.