Abstract
This paper presents iterative sequential action control (iSAC), a receding horizon approach for control of nonlinear systems. The iSAC method has a closed-form open-loop solution, which is iteratively updated between time steps by introducing constant control values applied for short duration. Application of a contractive constraint on the cost is shown to lead to closed-loop asymptotic stability under mild assumptions. The effect of asymptotically decaying disturbances on system trajectories is also examined. To demonstrate the applicability of iSAC, we employ a variety of systems and conditions, including a 13-dimensional quaternion-based quadrotor and NASA's Transition Region and Coronal Explorer (TRACE) spacecraft. Each system is tested in different scenarios, ranging from feasible and infeasible trajectory tracking to setpoint stabilization, with or without the presence of external disturbances. Finally, limitations of this paper are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.