Abstract

Identification of chemical compounds having desirable properties is a central goal of screening campaigns. Iterative screening is a means of surveying a set of compounds, during which their property values are determined and used as feedback for regression models. Quantitative models that assess the relationships between chemical structures and property/activity are repeatedly updated through this type of cycle, and the efficient sampling of compounds for the subsequent test is a key factor in the early identification of target compounds. Nevertheless, methodological approaches to comparisons and to establishing the degree of extrapolation of sampled compounds, including the effects of applicability domains, are still required. In the present study, we conducted a series of virtual experiments to assess the characteristics of different iterative screening methods. Genetic algorithm-based partial least-squares regression, support vector regression, Bayesian optimization with Gaussian Process (GP), and batch-based Bayesian optimization with GP (GP_batch) were all compared, based on the analysis of one million compounds extracted from the ZINC database. Our results show that, irrespective of the diversity of the initial set of compounds, it was possible to identify a compound having the desired property value using the appropriate screening method. However, overall, the GP_batch method was found to be preferable when evaluating properties either which are difficult to predict or for which a key factor is present in the set of molecular descriptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.