Abstract

The minimum power distortionless response beamformer has a good interference rejection capability, but the desired signal will be suppressed if signal steering vector or data covariance matrix is not precise. The worst-case performance optimization-based robust adaptive beamformer (WCB) has been developed to solve this problem. However, the solution of WCB cannot be expressed in a closed form, and its performance is affected by a prior parameter, which is the steering vector error norm bound of the desired signal. In this paper, we derive an approximate diagonal loading expression of WCB. This expression reveals a feedback loop relationship between steering vector and weight vector. Then, a novel robust adaptive beamformer is developed based on the iterative implementation of this feedback loop. Theoretical analysis indicates that as the iterative step increases, the performance of the proposed beamformer gets better and the iteration converges. Furthermore, the proposed beamformer does not subject to the steering vector error norm bound constraint. Simulation examples show that the proposed beamformer has better performance than some classical and similar beamformers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.