Abstract

In many applications of compressed sensing the signal is block sparse, i.e., the non-zero elements of the sparse signal are clustered in blocks. Here, we propose a family of iterative algorithms for the recovery of block sparse signals. These algorithms, referred to as iterative reweighted l 2 /l 1 minimization algorithms (IR-l 2 /l 1 ), solve a weighted l 2 /l 1 minimization in each iteration. Our simulation and analytical results on the recovery of both ideally and approximately block sparse signals show that the proposed iterative algorithms have significant advantages in terms of accuracy and the number of required measurements over non-iterative approaches as well as existing iterative methods. In particular, we demonstrate that, by increasing the block length, the performance of the proposed algorithms approaches the Wu-Verdu theoretical limit. The improvement in performance comes at a rather small cost in complexity increase. Further improvement in performance is achieved by using a priori information about the location of non-zero blocks, even if such a priori information is not perfectly reliable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.