Abstract

ABSTRACT Observations of galaxy clustering are made in redshift space, which results in distortions to the underlying isotropic distribution of galaxies. These redshift-space distortions (RSDs) not only degrade important features of the matter density field, such as the baryonic acoustic oscillation (BAO) peaks, but also pose challenges for the theoretical modelling of observational probes. Here, we introduce an iterative non-linear reconstruction algorithm to remove RSD effects from galaxy clustering measurements, and assess its performance by using mock galaxy catalogues. The new method is found to be able to recover the real-space galaxy correlation function with an accuracy of $\sim \!1{{\ \rm per\ cent}}$, and restore the quadrupole accurately to 0, on scales $s\gtrsim 20\,h^{-1}\, {\rm Mpc}$. It also leads to an improvement in the reconstruction of the initial density field, which could help to accurately locate the BAO peaks. An ‘internal calibration’ scheme is proposed to determine the values of cosmological parameters, as a part of the reconstruction process, and possibilities to break parameter degeneracies are discussed. RSD reconstruction can offer a potential way to simultaneously extract the cosmological parameters, initial density field, real-space galaxy positions, and large-scale peculiar velocity field (of the real Universe), making it an alternative to standard perturbative approaches in galaxy clustering analysis, bypassing the need for RSD modelling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call