Abstract
In this work, a new model with broad utility for quantitative spectroscopy development is reported. A primary objective of this work is to create a novel modeling procedure that may allow for higher automation of the model development process. The fundamental concept is simple yet powerful even for complex spectra and is employed with no additional preprocessing. This approach is applicable for several types of spectroscopic data to develop regression models that have similar or greater quality than the current methods. The key modeling steps are a matrix transformation and subsequent feature selection process that are collectively referred to as iterative regression of corrective baselines (IRCB). The transformed matrix (Xtransform) is a linearized form of the original X data set. Features from Xtransform that are predictive of Y can be ranked and selected by ordinary least-squares regression. The best features (rows of Xtransform) are linear depictions of Y that can be utilized to develop regression models with several machine learning models. The IRCB workflow is first detailed by using a case study of Fourier transform infrared (FTIR) spectroscopy for prepared solutions of a three-component mixture. Next, IRCB is applied and compared to benchmark results for the 2006 "Chimiométrie" near-infrared spectroscopy (NIR) soil composition challenge and Raman measurements of a simulated nuclear waste slurry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.