Abstract
This paper proposes an approach referred as: iterative refinement of possibility distributions by learning (IRPDL) for pixel-based image classification. The IRPDL approach is based on the use of possibilistic reasoning concepts exploiting expert knowledge sources as well as ground possibilistic seeds learning. The set of seeds is constructed by incrementally updating and refining the possibility distributions. Synthetic images as well as real images from the RIDER Breast MRI database are being used to evaluate the IRPDL performance. Its performance is compared with three relevant reference methods: region growing, semi-supervised fuzzy pattern matching, and Markov random fields. The IRDPL performance (in terms of recognition rate, 87.3%) is close to the Markovian method (88.8%) that is considered to be the reference in pixel-based image classification. IRPDL outperforms the other two methods, respectively, at the recognition rates of 83.9% and 84.7%. In addition, the proposed IRPDL requires fewer parameters for the mathematical representation and presents a reduced computational complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.