Abstract
We propose iterative proportional scaling (IPS) via decomposable submodels for maximizing the likelihood function of a hierarchical model for contingency tables. In ordinary IPS the proportional scaling is performed by cycling through the members of the generating class of a hierarchical model. We propose the adjustment of more marginals at each step. This is accomplished by expressing the generating class as a union of decomposable submodels and cycling through the decomposable models. We prove the convergence of our proposed procedure, if the amount of scaling is adjusted properly at each step. We also analyze the proposed algorithms around the maximum likelihood estimate (MLE) in detail. The faster convergence of our proposed procedure is illustrated by numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.