Abstract

Abstract The iterative processes of gradient type for nonlinear equations with differentiable operator satisfying a local condition in the neighborhood of solution are investigated. The theorems on weak and strong convergence of iterations constructed by these methods and their modified analogs are established. The inverse gravimetry problem is considered as the application of the developed methods: retrieval of the interface between the media with different constant densities. For stable solution of the nonlinear inverse magnetometry problem the additional regularization by the Tikhonov method is used and for approximation of the regularized solution one variant of the conjugate gradient method is applied. The numerical results for model and real gravitational and magnetic data are considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.