Abstract

A method is proposed, called the iterative relaxation matrix approach (IRMA), for the structure determination of biomolecules in solution based on 2D NOE data. Proton-proton distances are determined in a way in which indirect magnetization transfer (spin diffusion) is taken fully into account. In this method experimental NOEs are combined with calculated NOE values based on a molecular model. Back-transformation of this mixed NOE matrix gives a relaxation matrix which provides a better estimation of the cross-relaxation rates than can be obtained directly from the NOE cross peaks. From the cross-relaxation rates distance constraints can be derived, which are used in restrained molecular dynamics calculations to obtain an improved molecular model. The iteration cycle can be repeated until all experimental NOE values are satisfactorily explained. The method was tested with a DNA octamer, d(GCGTTGCG)·d(CGCAACGC).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.