Abstract

Successive interference cancellation (SIC) is a technique for increasing the capacity of cellular code-division multiple-access (CDMA) systems. To be successful, SIC systems require a specific distribution of the users' received powers, especially in the inevitable event of imperfect interference cancellation. This apparent complication of standard CDMA power control has been frequently cited as a major drawback of SIC. In this paper, it is shown that surprisingly, these complications come with no additional complexity. It is shown that 1-bit UP/DOWN power control-like that used in commercial systems-monotonically converges to the optimal power distribution for SIC with cancellation error. The convergence is proven to within a discrete step-size in both signal-to-noise plus interference ratio and power. Additionally, the algorithm is applicable to multipath and fading channels and can overcome channel estimation error with a standard outer power control loop.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.