Abstract

In this paper, we present a deep reinforcement learning (RL) framework for iterative dialog policy optimization in end-to-end task-oriented dialog systems. Popular approaches in learning dialog policy with RL include letting a dialog agent to learn against a user simulator. Building a reliable user simulator, however, is not trivial, often as difficult as building a good dialog agent. We address this challenge by jointly optimizing the dialog agent and the user simulator with deep RL by simulating dialogs between the two agents. We first bootstrap a basic dialog agent and a basic user simulator by learning directly from dialog corpora with supervised training. We then improve them further by letting the two agents to conduct task-oriented dialogs and iteratively optimizing their policies with deep RL. Both the dialog agent and the user simulator are designed with neural network models that can be trained end-to-end. Our experiment results show that the proposed method leads to promising improvements on task success rate and total task reward comparing to supervised training and single-agent RL training baseline models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.