Abstract

A novel iterative physical optics (IPO) algorithm is proposed, for the analysis of scattering from large complex geometries involving multiple reflections and complex self-shadowing effects. The algorithm involves two types of nested iterations: reflection (“bounce”) iterations and self-shadowing iterations. At each bounce iteration, the physical optics sources induced on the surface of the scatterer produce a correction to the incident field, which in turn creates a correction to the physical optics sources. Each correction is evaluated to account for self-shadowing effects by a nested iterative evaluation of shadow-radiation integrals. The nested iterative formulation is naturally accelerable by using fast field evaluation methods, e.g., the multilevel non-uniform grid algorithm. The procedure's applicability to complex geometries is demonstrated numerically by comparison to numerically exact results and to standard PO results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.