Abstract

An iterative phase-shifting algorithm based on the least-squares principle is developed to overcome the random piston and tilt wavefront errors generated from the phase shifter. The algorithm iteratively calculates the phase distribution and the phase-shifting map to minimize the sum of squared errors in the interferograms. The performance of the algorithm is evaluated via computer simulations and validated by the Fizeau interferometer measurements. The results show that the proposed algorithm has a fast convergence rate and satisfactory phase-estimation accuracy, improving the measurement precision of the phase-shifting interferometers with significant phase-shifter errors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.