Abstract
Breast cancer remains the most prevalent malignancy in women in many countries around the world, thus calling for better imaging technologies to improve screening and diagnosis. Grating interferometry (GI)-based phase contrast X-ray CT is a promising technique which could make the transition to clinical practice and improve breast cancer diagnosis by combining the high three-dimensional resolution of conventional CT with higher soft-tissue contrast. Unfortunately though, obtaining high-quality images is challenging. Grating fabrication defects and photon starvation lead to high noise amplitudes in the measured data. Moreover, the highly ill-conditioned differential nature of the GI-CT forward operator renders the inversion from corrupted data even more cumbersome. In this paper, we propose a novel regularized iterative reconstruction algorithm with an improved tomographic operator and a powerful data-driven regularizer to tackle this challenging inverse problem. Our algorithm combines the L-BFGS optimization scheme with a data-driven prior parameterized by a deep neural network. Importantly, we propose a novel regularization strategy to ensure that the trained network is non-expansive, which is critical for the convergence and stability analysis we provide. We empirically show that the proposed method achieves high quality images, both on simulated data as well as on real measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.