Abstract

In this paper, we consider linear system identification with batched binary-valued observations. We constructed an iterative parameter estimate algorithm to achieve the maximum likelihood (ML) estimate. The first interesting result was that there exists at most one finite ML solution for this specific maximum likelihood problem, which was induced by the fact that the Hessian matrix of the log-likelihood function was negative definite under binary data and Gaussian system noises. The global concave property and local strongly concave property of the log-likelihood function were obtained. Under mild conditions on the system input, we proved that the ML function has a unique maximum point. The second main result was that the ML estimate was consistent under persistent excitation inputs, which infers the effectiveness of ML estimate. Finally, the proposed iterative estimate algorithm converged to a fixed vector with an exponential rate that was proved by constructing a Lyapunov function. A more interesting result was that the limit of the iterative algorithm achieved the maximization of the ML function. Numerical simulations are illustrated to support the theoretical results obtained in this paper well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.