Abstract

AbstractThe consistent conditions and the general expressions about the Hermitian solutions of the linear matrix equations AXB=C and (AX, XB)=(C, D) are studied in depth, where A, B, C and D are given matrices of suitable sizes. The Hermitian minimum F‐norm solutions are obtained for the matrix equations AXB=C and (AX, XB)=(C, D) by Moore–Penrose generalized inverse, respectively. For both matrix equations, we design iterative methods according to the fundamental idea of the classical conjugate direction method for the standard system of linear equations. Numerical results show that these iterative methods are feasible and effective in actual computations of the solutions of the above‐mentioned two matrix equations. Copyright © 2006 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.