Abstract
In this paper, an iterative neural network adaptive robust control (INNARC) strategy is proposed for the maglev planar motor (MLPM) to achieve good tracking performance and uncertainty compensation. The INNARC scheme consists of adaptive robust control (ARC) term and iterative neural network (INN) compensator in a parallel structure. The ARC term founded on the system model realizes the parametric adaptation and promises the closed-loop stability. The INN compensator based on the radial basis function (RBF) neural network is employed to handle the uncertainties resulted from the unmodeled non-linear dynamics in the MLPM. Additionally, the iterative learning update laws are introduced to tune the network parameters and weights of the INN compensator simultaneously, so the approximation accuracy is improved along the system repetition. The stability of the INNARC method is proved via the Lyapunov theory, and the experiments are conducted on an home-made MLPM. The results consistently demonstrate that the INNARC strategy possesses the satisfactory tracking performance and uncertainty compensation, and the proposed INNARC is an effective and systematic intelligent control method for MLPM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.