Abstract

IntroductionTargeting repeating‐pattern atrial fibrillation (AF) sources (reentry or focal drivers) can help in patient‐specific ablation therapy for AF; however, the development of reliable and accurate tools for locating such sources remains a major challenge. We describe iterative catheter navigation (ICAN) algorithm to locate AF drivers using a conventional circular Lasso catheter.Methods and ResultsAt each step, the algorithm analyzes 10 bipolar electrograms recoded at a given catheter location and the history of previous catheter movements to determine if the source is inside the catheter loop. If not, it calculates new coordinates and selects a new position for the catheter. The process continues until a source is located. The algorithm was evaluated in a computer model of atrial tissue with various degrees of fibrosis under a broad range of arrhythmia scenarios. The latter included slow and fast reentry, macroreentry, figure‐of‐eight reentry, and fibrillatory conduction. Depending on the initial distance of the catheter from the source and scenario, it took about 3 to 16 steps to localize an AF source. In 94% of cases, the identified location was within 4 mm from the source, independently of the initial position of the catheter. The algorithm worked equally well in the presence of patchy fibrosis, low‐voltage areas, fragmented electrograms, and dominant‐frequency gradients.ConclusionsAF repeating‐pattern sources can be localized using circular catheters without the need to map the entire tissue. The proposed algorithm has the potential to become a useful tool for patient‐specific ablation of AF sources located outside the pulmonary veins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call