Abstract

Plastic scintillators have been used for gamma ray detection in the fields of dosimetry and homeland security because of their desired characteristics such as a fast decay time, a low production cost, availability in a large-scale, and a tissue-equivalence. Gaussian energy broadening (GEB) in MCNP simulation is an effective treatment for tallies to calculate the broadened response function of a detector similarly to measured spectra. The full width at half maximum (FWHM) of a photopeak has been generally used to compute input parameters required for the GEB treatment. However, it is hard to find the photopeak in measured gamma spectra with plastic scintillators so that computation of the input parameters for the GEB has to be taken with another way. In this study, an iterative method for the GEB treated MCNP simulation to calculate the response function of a plastic scintillator is suggested. Instead of the photopeak, Compton maximum and Compton edge were used to estimate energy broadening in the measured spectra and to determine the GEB parameters. In a demonstration with a CsI(Tl) scintillator, the proposed iterative simulation showed the similar gamma spectra to the existing method using photopeaks. The proposed method was then applied to a polystyrene scintillator, and the simulation result were in agreement with the measured spectra with only a little iteration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.