Abstract
Mixed-integer linear programming (MILP) is a powerful tool for planning and control problems because of its modeling capability and the availability of good solvers. However, for large models, MILP methods suffer computationally. In this paper, we present iterative MILP algorithms that address this issue. We consider trajectory-generation problems with obstacle-avoidance requirements and minimum-time trajectory-generation problems. These problems involve vehicles that are described by mixed logical dynamical equations, a form of hybrid system. The algorithms use fewer binary variables than standard MILP methods, and require less computational effort.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.