Abstract
Force-based atomistic-continuum hybrid methods are the only known pointwise consistent methods for coupling a general atomistic model to a finite-element continuum model. For this reason, and due to their algorithmic simplicity, force-based coupling methods have become a popular class of atomistic-continuum hybrid models as well as other types of multiphysics models. However, the recently discovered unusual stability properties of the linearized force-based quasicontinuum (QCF) approximation, especially its indefiniteness, present a challenge to the development of efficient and reliable iterative methods. We present analytic and computational results for the generalized minimal residual (GMRES) solution of the linearized QCF equilibrium equations. We show that the GMRES method accurately reproduces the stability of the force-based approximation and conclude that an appropriately preconditioned GMRES method results in a reliable and efficient solution method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.