Abstract

We perform an analytic and experimental study of line iterative methods for solving linear systems arising from finite difference discretizations of non-self-adjoint elliptic partial differential equations on two-dimensional domains. The methods consist of performing one step of cyclic reduction, followed by solution of the resulting reduced system by line relaxation. We augment previous analyses of one-line methods, and we derive a new convergence analysis for two-line methods, showing that both classes of methods are highly effective for solving the convection-diffusion equation. In addition, we compare the experimental performance of several variants of these methods, and we show that the methods can be implemented efficiently on parallel architectures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.