Abstract

Our interest in this paper is to introduce a Halpern-type algorithm with both inertial terms and errors for approximating fixed point of a nonexpansive mapping. We obtain strong convergence of the sequence generated by our proposed method in real Hilbert spaces under some reasonable assumptions on the sequence of parameters. As applications, we present some strong convergence results for monotone inclusion, variational inequality problem, linear inverse problem, and LASSO problem in Compressed Sensing. Our result improves the rate of convergence of existing Halpern method for monotone inclusion, variational inequality problem, linear inverse problem and LASSO problem in compressed sensing as illustrated in our numerical examples both in finite and infinite dimensional Hilbert spaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call